Advanced methods for relightable scene representations in image space

نویسنده

  • Martin Fuchs
چکیده

The realistic reproduction of visual appearance of real-world objects requires accurate computer graphics models that describe the optical interaction of a scene with its surroundings. Data-driven approaches that model the scene globally as a reflectance field function in eight parameters deliver high quality and work for most material combinations, but are costly to acquire and store. Image-space relighting, which constrains the application to create photos with a virtual, fix camera in freely chosen illumination, requires only a 4D data structure to provide full fidelity. This thesis contributes to image-space relighting on four accounts: (1) We investigate the acquisition of 4D reflectance fields in the context of sampling and propose a practical setup for pre-filtering of reflectance data during recording, and apply it in an adaptive sampling scheme. (2) We introduce a feature-driven image synthesis algorithm for the interpolation of coarsely sampled reflectance data in software to achieve highly realistic images. (3) We propose an implicit reflectance data representation, which uses a Bayesian approach to relight complex scenes from the example of much simpler reference objects. (4) Finally, we construct novel, passive devices out of optical components that render reflectance field data in real-time, shaping the incident illumination into the desired image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

Capturing Relightable Human Performances under General Uncontrolled Illumination

We present a novel approach to create relightable free-viewpoint human performances from multi-view video recorded under general uncontrolled and uncalibated illumination. We first capture a multi-view sequence of an actor wearing arbitrary apparel and reconstruct a spatio-temporal coherent coarse 3D model of the performance using a marker-less tracking approach. Using these coarse reconstructi...

متن کامل

Image Enhancement via Reducing Impairment Effects on Image Components

In this paper, a new approach is presented for improving image quality. It provides a new outlook on how to apply the enhancment methods on images. Image enhancement techniques may deal with the  illumination, resolution, or distribution of pixels values. Issues such as the illumination of the scene and reflectance of objects affect on image captures. Generally, the pixels value of an image is ...

متن کامل

Category co-occurrence modeling for large scale scene recognition

Scene recognition involves complex reasoning from low-level local features to high-level scene categories. The large semantic gap motivates that most methods model scenes resorting to mid-level representations (e.g. objects, topics). However, this implies an additional mid-level vocabulary and has implications in training and inference. In contrast, the semantic multinomial (SMN) represents pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008